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COMMENT 

Schwartz’s method and Goldstein’s eigenvalue problem 
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B-4000 Liege 1, Belgium 
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Abstract. We use Schwartz’s method to study a relativistic problem whose mathematical 
structure is similar to Goldstein’s eigenvalue problem, i.e. the problem of a zero energy 
Klein-Gordon particle in an external Coulomb field. We show that Schwartz’s method fails 
to give a correct answer. Our result suggests that additional information about the 
eigenvalue spectrum for energies different from zero is needed before deciding whether 
Goldstein’s cut-off independent solution discussed recently by Delbourgo and Prasad is 
physically meaningful. 

As is well known (Goldstein 1953), the ladder approximation to the Bethe-Salpeter 
equation for a fermion-antifermion system exchanging massless bosons reduces to a 
simple form when zero energy eigenvalues are considered for the pseudoscalar sector of 
the interaction (Goldstein’s problem). Delbnurgo and Prasad (1 977) recently showed 
that an adaptation of Schwartz’s method (Schwartz 1976) for handling nearly singular 
non-relativistic potentials led to a solution of Goldstein’s problem which was in 
agreement with previous investigations (Delbourgo eta1 1967). Two difficulties arise in 
connection with this particular solution (Goldstein’s solution). First, Goldstein’s 
solution does not satisfy Mandelstam’s criterion for acceptability (Mandelstam 1955, 
Higashijima and Nishimura 1976) so that, strictly speaking, Goldstein’s problem has no 
cut-off independent solution, although an acceptable (cut-off dependent) solution is 
arbitrarily close to Goldstein’s solution if we take a sufficiently large (but finite) cut-off 
momentum. A detailed study of the connection between Goldstein’s solution and a 
cut-off dependent solution can be found in the paper by Higashijima and Nishimura 
(1976). A second difficulty comes from the complexity of the fermion-antifermion 
problem when the energy eigenvalue is not zero. This complexity prevents us from 
drawing any conclusion about the physical relevance of Goldstein’s solution. By this we 
mean that there is no a priori reason why Goldstein’s solution should be the zero energy 
limit of the (unknown) energy spectrum of the full fermion-antifermion wave equation. 
The purpose of this comment is to illustrate this remark with a simple relativistic 
problem for which the eigenvalue spectrum can be computed for all energies. Specific- 
ally, we shall apply Schwartz’s method to find for which value of the coupling constant a 
Klein-Gordon particle in a Coulomb field has zero energy. As will be seen below, the 
differential equation to be solved is similar to Goldstein’s equation. However, 
Schwartz’s method fails to yield a correct answer. 
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Consider a Klein-Gordon particle of mass m in an external Coulomb field of charge 
Ze (we use units such that h = c = 1 and put the electron charge equal to -e). The radial 
Klein-Gordon (KG) equation describing a zero energy bound state for a particle of 
charge -e is: 

The mathematical structure of equation (1) is similar to the radial equation of 
Goldstein’s problem studied by Delbourgo and Prasad (1977). Let us now, with 
Schwartz (1976), introduce a short-distance modification of the Coulomb interaction 
and write: 

instead of Z2e4/r2 in (1). Equation (1) now becomes identical with Schwartz’s original 
equation (Schwartz’s model I) provided we make the substitution: 

( E  negative). (3) 2 - E + + m  

We now use Schwartz’s method to find: 

where the cn are coefficients given by Schwartz (1976). For small E ,  (4) yields: 

Formula ( 5 )  (with m2 + - E )  is given by Schwartz (1976). It can be obtained from (4) by 
writing: 

From either formula (4) or (5)’  one finds that, in the limit E + 0: 

e 2 Z = I + 1  (zero energy bound state). 

For instance, formula ( 5 )  yields 

Thus we see from (6) that, in complete analogy with Goldstein’s problem, Schwartz’s 
method selects the least singular solution to equation (1). The trouble is that (6) is well 
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known to be wrong. Indeed, for e2Z = 1 +$, the Klein-Gordon equation has a bound 
state solution of energy 

/ + $  2 - 1 i 2  

E K G = m [ l + (  n-(l+$> ) ]  (7) 

with n = 1 + 1, I + 2, . . . (Baym 1969). 
Thus, the mathematical method we used f d e d  to yield the correct solution to our 

problem. We were only able to verify this, however, by knowing the eigenvalue 
spectrum for EKG # 0. As our equation (1) and Goldstein’s equation have a similar 
structure, our result suggests that only a study of the Bethe-Salpeter fermion- 
antifermion system for total energy eigenvalues different from zero could decide 
whether Goldstein’s solution is indeed physically meaningful. 
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